�

	Class Libraries Starter Course

Part 1

The OBJECTS and OBDATE class libraries.

The Objects class library.

All the objects contained in OBJECTS are not really designed to be inherited from. They are common definitions of objects required for any Obsydian model. You can create your own versions of these objects and not use objects as a library if you choose.

The objects form two groups: Fields and Variables. All the fields start with ‘*’ and so appear in the Environment variable section of action diagrams.

The two fields required for generated Obsydian functions to communicate low level operations back to the action diagram code are *View status and *Call status.

*View status is set after any view I/O operation and reflects what happened during the operation. The name of this field and its values are hard coded into the Obsydian generators and they cannot be changed.

*Call status and its values are also hard coded into the generators. It is used to communicate the result of a function call. If the call to the target function is not made successfully for whatever reason (communications failure, parameter mismatch, function not found, …), this field is set to a value that is not ‘*Normal’.

Two other fields are automatically used by the generated functions. These are *Returned status and *Returning status. The *Returning status field is passed back by any called function to its caller, putting the value into the calling function’s *Returned status field. The rule is set *Returning status in the called function and test *Returned status in the calling function. You have to set *Returning status to a value with action diagram code, the generators will not set or change either of these two field’s values.

The other ‘*’ fields in OBJECTS are used by the shipped class libraries, mainly in meta code, and are always present in all the class library action diagrams.

The OBDATE class library.

This class library contains abstract fields and functions for the implementation of date and time type fields. The fields allow you to store the date and time information in pure numeric forms as well as the standard ISO forms. The functions allow conversions between each of these forms, as well as performing calculations involving dates and times. The library also contains source code objects to manipulate date & time fields on the Windows platform, as well as source code objects to get the system time and date from the current platform.

Fields

The following fields are specifically designed to be inherited from, providing automatic validation and panel representation in a form the implementation platform can interpret.

The date or time is displayed in ISO form which depends on the specific settings of the implementation platform. In Windows the display of an ISO date or time can be changed from the International settings from the Control panel. On an AS/400 the format of an ISO date or time is controlled by system values.

Each of the fields scope an external (ISO) form of the field, and functions to perform the conversion. The OBASE class library has code in its function templates to call the conversion functions to transform each of the fields prior to displaying a panel, and immediately after reading a panel. If you don’t use the OBASE functions you will need to call the conversion function yourself.

DATES

For storing a date as six digits in the form of YYMMDD where YY is the year, MM is the month and DD is the day inherit from ISO displayed numeric date 6.

For storing a date as seven digits in the form of CYYMMDD where YY is the year, MM is the month and DD is the day inherit from ISO displayed numeric date 7. The C is an IBM convention for representing a century. It is 0 if the year is between 40 and 99 inclusive and for any other year. If you add 1900 to the CYY part of the date 7 field you get the year with the true century.

For storing a date as eight digits in the form of CCYYMMDD where CCYY is the full year, MM is the month and DD is the day inherit from ISO displayed numeric date 8.

TIMES

For storing a time as six digits in the form of HHMMSS where HH is the hours, MM is the minutes and SS is the seconds inherit from ISO displayed numeric time. This assumes the time in the 24 hour format.

�
More primitive forms of the above dates and times are also provided in OBDATE and these can also be inherited from. They automatically provide validation but there is no transformation to or from panels.

They are:

DATES

For storing a date as six digits in the form of YYMMDD where YY is the year, MM is the month and DD is the day inherit from Numeric date 6.

For storing a date as seven digits in the form of CYYMMDD where YY is the year, MM is the month and DD is the day inherit from Numeric date 7. The C is an IBM convention for representing a century. It is 0 if the year is between 40 and 99 inclusive and for any other year. If you add 1900 to the CYY part of the date 7 field you get the year with the true century.

For storing a date as eight digits in the form of CCYYMMDD where CCYY is the full year, MM is the month and DD is the day inherit from Numeric date 8.

For storing a date in ISO form inherit from ISO date. The way the date is stored is determined by the database.

TIMES

For storing a time as six digits in the form of HHMMSS where HH is the hours, MM is the minutes and SS is the seconds inherit from Numeric time. This assumes the time in the 24 hour format.

For storing a date in ISO form inherit from ISO Time. The way the date is stored is determined by the database.

An alternative way of defining dates and times is to use a structured field. This method allows the component parts of the date or time to be referenced directly. The fields you can inherit from are:

Structure date

This field includes components for a 4 digit year, a 2 digit month and a 2 digit day.

Structure time

This field includes components for 2 digit hours, minutes and seconds.

The final type of field used for storing dates and times is a timestamp. This is a combination of date, time and microseconds. This type of field is not usually suitable for input on a panel but is useful for recording the exact date and time a row of a table is modified. The field you can inherit from is:

ISO timestamp

For storing date, time and microseconds in one field in the database in ISO form.

Quick Reference

You want a…�
Inherit from�
�
Date with�
�
�
	Panel formatting &�
�
�
		YYMMDD on tables�
ISO displayed numeric date 6�
�
		CYYMMDD on tables�
ISO displayed numeric date 7�
�
		CCYYMMDD on tables�
ISO displayed numeric date 8�
�
		ISO date on tables�
ISO date�
�
		Field components on tables�
Structure date�
�
	No formatting &�
�
�
		YYMMDD on tables�
Numeric date 6�
�
		CYYMMDD on tables�
Numeric date 7�
�
		CCYYMMDD on tables�
Numeric date 8�
�
Time with�
�
�
	Panel formatting &�
�
�
		HHMMSS on tables�
ISO displayed numeric time�
�
		Field components on tables�
Structure time�
�
	No formatting�
Numeric time�
�
Timestamp�
ISO timestamp�
�

Functions

All the functions in OBDATE have been designed to generated and compiled directly. This has already been done for you in the pre-compiled C++ libraries supplied with Obsydian. However, if you need to specialize a particular function, each has edit points before and after the main calculation so that you can create your own version, by inheritance, and add any code you need.

The functions fall into three categories, validations, calculations and conversions.

VALIDATIONS

Quick Reference

You want to validate…�
Call�
�
ISO Date�
Validate ISO date�
�
Numeric date 6�
Validate date 6�
�
Numeric date 7�
Validate date 7�
�
Numeric date 8�
Validate date 8�
�
Structure date�
Validate structure date�
�
ISO time�
Validate ISO time�
�
Numeric time�
Validate numeric time�
�
Structure time�
Validate structure time�
�
�

CALCULATIONS

Many of the calculations allow you to exclude particular days of the week from the calculation. Each day of the week has its own parameter to these functions and can be set to *Yes or *No. In the quick reference table an entry of ‘DOW array’ indicates a function has these fields as formal input parameters.

Quick Reference

You want to calculate…�
Call�
Input parameter types�
Output parameter types�
�
a new date a number of days from a starting date.�
Add n days to date�
Structure date

Days to increment

DOW array�
Structure date�
�
a new date a number of months from a starting date.�
Add n months to date�
Structure date

Months to increment�
Structure date�
�
a new date and time a number of hours, minutes and seconds from a start date and time.�
Add time to time�
Structure date

Structure time

Hours to increment

Minutes to increment

Seconds to increment�
Structure date

Structure time�
�
if the date is selected.�
Check if date is selected�
Structure date

DOW array�
Date is selected�
�
if the date is in a leap year.�
Check if leap year�
Structure date�
Leap year?�
�
If the time is morning or afternoon.�
Check if time is AM or PM�
Structure time�
Time AM or PM�
�
the number of days a date is from 1st Jan 0000.�
Get absolute days for date�
Structure date�
Absolute day number�
�
a date from the number of days from 1st Jan 0000.�
Get date for absolute days�
Absolute day number�
Structure date�
�
the number of years, months and days between two dates.�
Get date interval�
Start structure date

End structure date�
Number of years

Number of months

Number of days�
�
the day of the week for a date where Monday=1�
Get day of week�
Structure date�
Day of week�
�
the number of days between two dates�
Get days between dates�
Start structure date

End structure date

DOW array�
Number of days�
�
the number of selected days into the month for a date.�
Get days in month to date�
Structure date

DOW array�
Days in month�
�
the number of selected days into the week for a date.�
Get days in week to date�
Structure date

DOW array�
Number of days�
�
the number of selected days into the year for a date.�
Get days in year to date�
Structure date

DOW array�
Number of days�
�
the total number of minutes between two times�
Get minutes between times�
Start structure date

Start structure time

End structure date

End structure time�
Total minutes�
�
�
the number of minutes into the day for a time.�
Get minutes from midnight�
Structure time�
Total minutes�
�
the number of complete months between two dates�
Get months between dates�
Start structure date

End structure date�
Number of months�
�
the total number of seconds between two times.�
Get seconds between times�
Start structure date

Start structure time

End structure date

End structure time�
Total seconds�
�
the number of seconds into the day for a time.�
Get seconds from midnight�
Structure time�
Total seconds�
�
the total number of selected days in the month for a date.�
Get selected days for month�
Structure date

DOW array�
Selected days in month�
�
the total number of selected days in the year for a date.�
Get selected days in year�
Structure date

DOW array�
Selected days in year�
�
the number of days, hours, minutes and seconds between two times�
Get time interval�
Start structure date

Start structure time

End structure date

End structure time�
Number of days

Number of hours

Number of minutes

Number of seconds�
�
the year, short year, month and day from a date.�
Get year month day from date�
Structure date�
Extracted year

Extracted month

Extracted day

Extracted short year�
�

CONVERSIONS

You want to convert from…�
to…�
Call�
�
Numeric date 6�
Numeric date 7�
Convert date 6 to date 7�
�
�
Numeric date 8�
Convert date 6 to date 8�
�
�
ISO date�
Convert date 6 to ISO date�
�
�
Structure date�
Convert date 6 to str date�
�
Numeric date 7�
Numeric date 6�
Convert date 7 to date 6�
�
�
Numeric date 8�
Convert date 7 to date 8�
�
�
ISO date�
Convert date 7 to ISO date�
�
�
Structure date�
Convert date 7 to str date�
�
Numeric date 8�
Numeric date 6�
Convert date 8 to date 6�
�
�
Numeric date 7�
Convert date 8 to date 7�
�
�
ISO date�
Convert date 8 to ISO date�
�
�
Structure date�
Convert date 8 to str date�
�
ISO date�
Numeric date 6�
Convert ISO date to date 6�
�
�
Numeric date 7�
Convert ISO date to date 7�
�
�
Numeric date 8�
Convert ISO date to date 8�
�
�
Structure date�
Convert ISO date to str date�
�
Structure date�
Numeric date 6�
Convert str date to date 6�
�
�
Numeric date 7�
Convert str date to date 7�
�
�
Numeric date 8�
Convert str date to date 8�
�
�
ISO date�
Convert str date to ISO date�
�
�

ISO time�
Structure time�
Convert ISO time to str time�
�
�
Numeric time�
Convert ISO time to time 6�
�
Structure time�
ISO time�
Convert str time to ISO time�
�
�
Numeric time�
Convert str time to time 6�
�
Numeric time�
ISO time�
Convert time 6 to ISO time�
�
�
Structure time�
Convert time 6 to str time�
�

Source code

The source code objects are in two implementation languages; RPG and WinC.

RPG

You want to …�
Use�
Parameters�
�
get the current AS/400 system date�
RPG Get current date�
Date day

Date month

Date year�
�
get the current AS/400 system time�
RPG Get current time�
Numeric time�
�

WinC

You want to …�
Use�
Parameters�
�
get the current Windows date.�
WIN Get current date�
ISO date�
�
get the current Windows time.�
WIN Get current time�
ISO time�
�
get the current Windows date, time and micro-seconds.�
WIN Get current timestamp�
ISO Timestamp�
�
get the hour from an ISO time.�
WIN Get hour from time�
Time hour

ISO time�
�
get the minute from an ISO time.�
WIN Get minute from time�
Time minute

ISO time�
�
get the second from an ISO time.�
WIN Get second from time�
Time second

ISO time�
�
get the day from an ISO date.�
WIN Get day from date�
Date day

ISO date�
�
get the month from an ISO date.�
WIN Get month from date�
Date month

ISO date�
�
get the year from an ISO date.�
WIN Get year from date�
Date year

ISO date�
�
get a date by combining years, months and days.�
WIN Construct date from parts�
ISO date

Date year

Date month

Date day�
�
get a time by combining hours, minutes and seconds.�
WIN Construct time from parts�
ISO time

Time hour

Time minute

Time second�
�

The following WinC source code objects create a text string from a date or time or timestamp and allow you to format it in the way you want it to be viewed. This is useful for outputting dates and times in messages. The Format string field has some pre-defined values for commonly used formats but you can set up and use any format allowed on the C++ sprintf instruction.

You want to …�
Use�
Parameters�
�
format an ISO date into a text string.�
WIN Set date to format�
Formatted date

ISO date

Format string�
�
format an ISO time into a text string.�
WIN Set time to format�
Formatted time

ISO time

Format string�
�
format an ISO timestamp into a text string.�
WIN Set timestamp to format�
Formatted timestamp

ISO timestamp

Format string�
�

End of Part 1

Part 2 will follow shortly and will be about some simple Entities in the OBASE Class library.

�

(footnote continued)

�

�PAGE �8�

�PAGE �9�

.�.�.�.�.�.�.�.�.

