Obsydian Project Management Recommendations

Initial stages.

Define your data model for entities and their relationships as fully as possible. Key this into a local model, updating the group model regularly. Add as much information about the use of each entity as possible in the object narrative.

Attach appropriate base classes and fully extract them into the local model.

Match each entity in your model to the relevant abstract entities and add the required triples. Also match any fields to their appropriate abstract object.

To set up the group model for access by multiple developers :

Set up a subject area to contain all entities defined in the model and add them to it.

Using this subject area on the generate & build panel, select it and press the generate option, ensuring that you have the confirm option set to Yes. This will instantiate each implementation object. Cancel the generate on the confirm dialog box.

Update the group model.

These steps are recommended to avoid multiple developers creating the same object, and to fix the implementation name of the objects.

Group development

It has been found that it is more productive for one PC to generate and compile all the AS400 implementation objects into libraries and directories that the other developers can have in their library list or have access to via the server.

This PC can also be used to do the final generate & compile for functions that the developers have finished testing in their own environment.

This approach also ensures that the generation and compilation is consistent with the model as stored in the group model.

One way of setting up the multiple developer environment is as follows:

AS400

Library�Contains��XXSOURCE�RPG & DDS source files. It should also contain a job description for the application’s remote procedure calls.��XXDATA�Created physical files and views��XXOBJECT�Created programs��MYLIBRARY�Test objects and source. There will be one of these libraries for each developer. It will also contain the job description used by the developer for remote procedure calls.��

The AS400 library list for the completed application (contained in the source library in my set up) should contain the standard system libraries (QTEMP, QGPL, etc..) followed by XXDATA and XXOBJECT in the initial library list.

The job descriptions for the developers should be the same as for the application (above) but may use a different job queue. The initial library list should also have MYLIBRARY above XXDATA.

�Server

Directory�Contains��Group�Super directory to hold other directories.��Group\Model�Location of the shared group model.��Group\AS400�Location of generated AS400 source files.��Group\Gen�Location of final generation of windows source files��Group\Exe�Location of compiled windows objects to run the application. They are moved here from the Gen directory after compilation and linking.��Group\Sub�Location of sub-models used for extract.��

The .BLD file for the PC designated as the final generation/compilation machine should contain entries to direct the source and objects to the libraries and directories specified in the tables above.

Developer PC

Directory�Contains��Group�Super directory to hold other directories.��Group\Model�Location of local models and build (BLD) files.��Group\AS400�Location of generated AS400 source files.��Group\Gen�Location of final generation of windows source files��

Each developer will have a .BLD file for their local model. This should be set to direct the source and compiled objects into the directories specified in the above table. The AS400 source and objects should be directed to the appropriate MYLIBRARY. This allows developers to generate, compile and test functions without affecting other parts of the system.

To allow access by the developers to common compiled window's objects, the location of the <model>RTAPP.LIB library should be set in each developers OBMSVC.MAKINC file. In the example above, the line in the .MAKINC file (found in the <product>\LIB directory) should be changed to include the path to the common .LIB file and it’s name. For example (additions are in italics)from:

2. Set the USER_LIBDIRS variable to the location(s) of your libraries

USER_LIBDIRS =k:\finapp\gen\windows

3. Set the USER_LIBS variable to the name(s) of your libraries

USER_LIBS =finapp.libAPPLIB=RTAPP.LIB

to

APPLIB=<drive>:\GROUP\GEN\RTAPP.LIB	(where <drive> is the local drive letter assigned to the server directory.)

RTAPP.LIB

This library is used as a store for compiled objects (.OBJ files). The linker first looks for a .OBJ file for a function call, and, if it is not found, looks in one of the .LIB files specified in the linker parameters (stored in the OBMSVC.MAKMAKEMW.INC file in the OBSYDIAN\LIB directory). By making <model>RTAPP.LIB accessible to all the developers, each can use objects compiled by the others.

�Generate & Build

Communication between the developers and the central final compiler machine about finished functions is easily achieved using subject areas.

When the developer has finished a function or group of functions, they can be added to the subject area and the group model updated.

The compiler machine can then extract from the group model (all objects with their large properties is recommended) and use the subject area to select the required functions on the generate & build panel.

Subject areas can also be used to select all the fields within the model that have functions that need to be generated.

After final compilation of the objects by the compiler PC, the source files can be deleted. This ensures that objects are only compiled from the latest generation of source code, and saves on disk space.

For the Windows objects, the .CPP, .OBJ, .H, .RC & .RES files can all be deleted after a successful MAKE.

NMAKE limitations

The NMAKE.EXE program used during compilation and linking has certain limitations, mainly because it is a DOS program.

It requires a large amount of free memory below the 640k boundary. On any PC where you are compiling code, try to free up as much of this memory as possible. You can try running a memory optimization program (such as MEMMAKER) to move TSR’s to the upper memory area.

It also has a limitation on the size of the compiled function (this varies according to the compiler parameters but is normally 64K). A function, as far as the compiler is concerned, is not directly equivalent to an Obsydian function. Each sub-routine is treated as a function, so it is a good idea to put code into sub-routines rather than in-line.

Function structure

The use of the function type verb (FNC type SYS) can affect how the final application is built and the size of the components.

One way to break a large suite of functions into smaller units is to make functions that have no parameters (analogous to AS400 menu items) type External. The panels for these functions will normally be MDI’s or Top Applications. To link the functions together, use the API message API Start an EXE program rather than a direct function call.

Unresolved External link error

This error occurs when the linker is trying to find all the components of the final program (all the internal function calls). If you have used automatic naming of your functions, the reported function identifier is no real help in finding which function needs generating.

To help find these functions there is an option from within Obsydian to output to a text file all the implementation names of all the functions in the model. To use this option, display the object browser, use the right mouse button to get the pop-up menu, select the Options menu item. On the revealed menu, select the Output Surrogate Names menu item. This will create a file in the current directory called SURR.NME.

This file is in text format and can be opened using Microsoft’s Excel (or another similar product). Once imported, it can be sorted, any base class functions removed, and then printed. This list can be distributed to all your developers who can then easily identify which function is missing.

�Adding LIB’s to the OBMSVC.MAKMAKEMW.INC

If you are making calls to functions outside the scope of current Obsydian model(e.g. to functions contained in a third party .LIB, or your own compiled C or C++ functions), the library containing them needs to be included in the list of libraries on the linker parameters. This also need to be done if you are developing an application split between multiple Obsydian models, each with it own generation directory. The <model>RTAPP.LIB for each application that is accessed by the others will have to be added to the library list in the appropriate OBMSVC.MAKMAKEMW.INC files.

This list is contained in the OBMSVC.MAKMAKEMW.INC file in the OBSYDIAN\LIB directory. The library should be added to the end of the list in section 2 (see above for example). This can cause the LIB string to become too long for the link command and will cause the link process to fail.

To overcome this, the string used can be shortened by using environment settings on your PC to tell the compiler the location of any libraries it should use.

If you have installed the compiler using the supplied set-up routines, it will probably have made the necessary changes to your AUTOEXEC.BAT file for you.

The entries you need are as follows:

SET INCLUDE=c:\msvc\include

SET LIB=c:\msvc\lib

This assumes the default installation directories. Substitute your installation directories if they are different.

The computer will need to be re-started for these changes to have any effect.

Once these changes have been made the MAKEMW.INC file can be changed. The line concerned is the one starting with LIBS=. Before modification this will normally be:

LIBS = $(RTLIBS) $(COMPDIR)\lib\libw.lib $(COMPDIR)\lib\llibcew.lib \

		$(COMPDIR)\lib\oldnames.lib $(COMPDIR)\lib\mmsystem.lib\

		$(COMPDIR)\lib\shell.lib $(COMPDIR)\lib\commdlg.lib

Change it to the following and add your libraries to the end:

LIBS = $(RTLIBS) libw.lib llibcew.lib oldnames.lib mmsystem.lib shell.lib \ 	

		 commdlg.lib

Using the supplied Base Classes Libraries

Certain functions within the base class libraries are called by meta operations. These are associated with fields that are a sub-class of Status, and entities that are a sub-class of either the Referenced entity or Parent classes.

These functions can be called by many other functions and so should be generated and compiled during the initial stages of the development.

Before the Check & return virtualsreference functions are generated, the Virtualised attributes view should be edited to include all fields that have been selected on other entities as virtual fields and have their source on the current entity. The Check & return virtualsreference function returns these fields after successfully validating the existence of the instance of the referred to entity..

© Synon Research Limited	Printed on � TIME \@ "MMMM d, yyyy" �February 15, 1995�	Page � PAGE �44�

